The approximation power of moving least-squares
نویسنده
چکیده
A general method for near-best approximations to functionals on Rd, using scattered-data information is discussed. The method is actually the moving least-squares method, presented by the Backus-Gilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives’ approximations. For the interpolation problem this approach gives Mclain’s method. The method is near-best in the sense that the local error is bounded in terms of the error of a local best polynomial approximation. The interpolation approximation in Rd is shown to be a C∞ function, and an approximation order result is proven for quasi-uniform sets of data points.
منابع مشابه
A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملA New Technique for Image Zooming Based on the Moving Least Squares
In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملMeshless Local Petrov-Galerkin Method for Elasto-Static Analysis of Thick-Walled Isotropic Laminated Cylinders
In this paper, one of the simplest and most regular members of the family of the Meshless Local Petrov-Galerkin (MLPG) methods; namely MLPG5, is applied to analyze the thick-walled isotropic laminated cylinders under elasto-static pressure. A novel simple technique is proposed to eliminate a very important difficulty of the meshless methods to deal with material discontinuities regarding to the...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 67 شماره
صفحات -
تاریخ انتشار 1998